
i 
Equations (3.13) and (3.14) make it possible to write an equation for the jump in Fj 

in the form 

a f t e r  which  we s h a l l  r e p r e s e n t  the  r e m a i n i n g  e q u a t i o n s  (3 .12)  i n  the  fo rm 

[o{hJn h - - ( pG) 'h  i = O, OG[W/i]  = O, pG[xI = O. 

On a contact discontinuity_ (G = 0) [v i] = [aik]nk = ~k]n k = 0, while the quantities ~ij], 

[X], [e] and[F~] are arbitrary. In the case of a shock wave (G ~ 0), it follows from (3.15) 

that the symmetrical part Wij of the plastic gradient and the strengthening parameter X are 

continuous, while the remaining quantities are discontinuous. 
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ALLOWANCE FOR DIFFERENCES IN STRAIN RESISTANCE IN THE 

CREEP OF ISOTROPIC AND ANISOTROPIC MATERIALS 

A. A. Zolochevskii UDC 539.3 

The behavior of many light alloys and also polymer, composite, and other materials under 
creep conditions is characterized by differences in strain resistance. This property usually 
manifests itself in conventional tensile, compressive, and torsional tests. 

The classic creep theory for isotropic media, based on the Mises number, does not account 
for differences in strain resistance. It does not distinguish between tensile and compres- 
sive strain resistance characteristics and admits the possibility of analytical description 
of shearing strain on the basis of the characteristics determined in tensile tests in spite 
of the fact that it differs fundamentally from linear strain. Equal tensile, compressive, or 
shearing strength characteristics are ascribed to materials whose creep is satisfactorily 
described within the framework of the above model. In the opposite case, differences in re- 
sistance to these two or three types of strain are contemplated. Generally, the tensile, 
compressive, and shearing strain resistance characteristics should obviously be considered as 
three mutually independent characteristics of materials. 

Kharkov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 140-144, July-August, 1982. Original article submitted July 16, 1981. 
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At present, there are several approaches used in describing the creep of isotropic media 
with varying strain resistance. Some limited surveys of these approaches are found in [I~ 2]. 

Most of the proposed theories deal with the behavior of materials characterized only by 
different tensile and compressive characteristics�9 The differences in strain resistance are 
taken into account in various ways: by using the signs and magnitudes of the principal 
stresses, the first invariant of the stress tensor, or the third invariant of the stress 
deviator�9 Comparison between the data predicted by these theories and the experimental re- 
suits for complex stressed states indicates that they are in satisfactory agreement while it 
does not favor any particular theory [I]. In this case, the use of simpler physical equa- 
tions is probably justified. 

The creep of incompressible media characterized by varying resistance with respect to 
all three types of strain was considered in [2, 3]. This approach is based on the concept 
of a potential which depends on the quadratic and cubic invariants of the stress deviator. 
The associated flow law is used in this case�9 Subsequently, this approach has been extended 
[4] also to orthotropic media, where the principal directions of anisotropy coincide with the 
principal axes of the stress tensor. 

The type of relationship between strain and stress is determined by the properties of 
the material. The physical state of an anisotropic medium can be described by a number of 
tensors of different ranks�9 The choice of the anisotropy tensors is fairly arbitrary and is 
determined by the feasibility of processing the experimental results�9 It is very convenient 
to use invariants comprising the stress tensor and a certain number of these anisotropy 
tensors. The quadratic invariant is insufficient for materials with varying strain resis- 
tance, and odd invariants must be used�9 It will be shown below that, in order to describe 
the differences in strain resistance, at least in the case of the two-dimensional stressed 
state, the first and the second invariants are sufficient, and there is no need for intro- 
ducing the third invariant. 

Assume that o and o~ are respectively the linear and the quadratic simultaneous invar- 
iants of the stress tensor oij and the anisotropy tensors bij and aijkl: 

In creep theory, one usually proceeds from the assumption that there exists a potential 
whose equation of surface is assumed to be 

I= ~-- ~(~ =0. (I) 

Here Oe is the equivalent stress (Oe~ O) , and sT is the equivalent rate of creep strain, 
which, multiplied by Oe, yields the specific energy dissipation rate: 

W = oU~ ~, !:e., 

" e  W; " 
Oge ~ (2) 

' * C  where ~ij are the components of the creep rate tensor. The different ways of defining the 

potential correspond to different concepts of the equivalent stress�9 

For classic anisotropic media, the equivalent stress ~e is usually identified with oo 
[5], i.e., it is assumed that 

~e = oo. ( 3 )  

For materials with varying resistance to strain, we write 
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% = ~ + ~ .  (4) 

RelatioNship (4) comprises expression (3) as a particular case. 

The components of the creep rate tensor ~. are determined by the associated flow law ij 

[6] ~. = ~f/Ooij , where~ is a certain scalar factor. Then, by taking into account the lj 

relationships 

Oao/O~j = aijh~z/ao, OolOa u = bij, Ol/Oao = 2a e, Ol/Oa = 2a e 

we o b t a i n  t he  p h y s i c a l  e q u a t i o n s  
"C 
8~j = 2~% (auua, d % + b~). 

By u s i n g  t h e s e  r e l a t i o n s h i p s  and f o r m i n g  the  c o n t r a c t i o n  e x 3 ~ j  , we o b t a i n  

2x.~ = w .  ( 5 )  

" C  " 

Compar ing  Eqs .  (2) and ( 5 ) ,  y e  f i n d  2~Se = Zo. The t y p e  o f  t he  f u n c t i o n  e~ i s  d e t e r m i n e d  
f rom ( 1 ) .  A c t u a l l y ,  e e = h ( ~ ) .  The re  e v i d e n t l y  a l s o  e x i s t s  t he  i n v e r s e  r e l a t i o n s h i p  ~ = 
V(~e) , which determines the creep curves for a uniaxial stressed state. 

We note that 

v(0) = 0. ( 6 )  

The f u n c t i o n  V(Oe) can  a l s o  be  u sed  i n  one o f  the  f o l l o w i n g  f o r m s :  t he  power  r e l a t i o n s h i p  
V(~e) = ~e,n t h e  h y p e r b o l i c  s i n e  law v(o  e) = s h ( o e / A ) ,  and the  e x p o n e n t i a l  r e l a t i o n s h i p  
V(Oe) = exp(Oe/A ) .  A l t hough  c o n d i t i o n  (6) i s  n o t  s a t i s f i e d  i n  t he  l a t t e r  r e l a t i o n s h i p ,  t h i s  
p r e s e n t a t i o n  i s  o f t e n  used  b e c a u s e  o f  i t s  s i m p l i c i t y .  Thus ;  t he  p h y s i c a l  e q u a t i o n s  i n  t h e  
t h e o r y  o f  c r e e p  o f  a n i s o t r o p i c  media  w i t h  v a r y i n g  r e s i s t a n c e  to  s t r a i n  h a v e  the  f o l l o w i n g  
form: 

"c __ 

The material constants bij and aijkl in these relationships form tensors, which, with changes 
in the coordinate system, are transformed by means of the appropriate equations of tensor 
algebra. In view of the symmetry of the stress tensor oij, it can be considered without loss 
of generality that the tensors bij and aijk I satisfy the symmetry conditions 

bit = bj~, a i j h l =  aT ih l~  aiTIh ~ ahlii ~ 
which reduce the number of the different constants bij to six and the number of the constants 
aijkl to 2l. 

For materials which are not less symmetric than orthotr0pic materials, the physical re- 
lationships are written in the following form in a coordinate system whose axes coincide with 
the principal directions of anisotropy: 

"e ( a1111a11+ a1i,2ag2 + a113a~ + b11), ( 7 )  ~ = ,  (%) % 

~1212 ~12 t* 
812 

2 ? .... U2 
O~ ~ a l l l l ~ l l  ~ 2al122ffllOUg + 2 a n a a a n a a 3  + 2aggaa~22aa3 + 4a121g 12 + 
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We shall demonstrate the use of Eqs. (7) for describing creep in a two-dimensional 
stressed state. We use the experimental data [4, 5] obtained for tubular specimens of D16T 
material at 250~ which were subjected to internal pressure with simultaneous application 
of an axial tensile or compressive load. The relationship between the creep rate tensor and 
the stress tensor is in this case given by 

\ Go . \ 

O" = bii(~n "~ b~=O'=,,. 

The creep curves for the uniaxial stressed state [5] are described by the expressions 

" c  __ h IN--1 "c  t~ 'e  (t, 2), k = t ,  2. 811 - -  Ai I ~il sign ((~n)' s~= --  -- Vseil 

The value k = 1 corresponds to extension, while k = 2 corresponds to compression. The follow- 
ing material constants are known [5]: N = 7.5, A~ = 4.32.10 -11, A~ = 2.24-10 -II, and A~ = 
9.40.I0-Ii (mmi/kg) N-lh-Z Using the experimental data on tubular specimens tested under 
axial compression and on specimens subjected to internal pressure only given in the above 
paper, we determine the coefficients v~ = 0.53 and n~ = 0.33. These experimental constants 
are sufficient for determining the anisotropy parameters in the physical relationships under 
consideration: n = N- l = 6.5, 

a n n  = [ ( A~)II(n+l) q-- (A~)!/(n$1)]!/4 = t.58.10 -a  (kg/mmi) -in/(n+l)h-~/(n+l) , 

bi 1 = [(Al)Xt(n+l) _ (A~)l/(n+l)]/2 = i ,74. i0-a  (kg /mm' )  -n/(n+l)h-l/(n§ ,- ": 
. _rtai~l/(.+l),,~ tAql/("+a)] ' a /[b + (A~)I/C"+ab I -  Va-~m]'= 
~ ! 2 ~ 2  - -  I \ " i 1  "2  -- k 2/  J l l l l / t  11 

(Ai) i/(n+i) ]/rasi~2 = 9,57d0-1, anm s = _ __-- 2,03.10-n, bs ~ = __ ~ f a ~ 2  [bn + (A~)l/in§ -- __ 7,63.t0 -a .  

C o n s i d e r  f i v e  l o a d i n g  p r o g r a m s :  1) z z ~  = - - 1 0 . 9 8 ,  ~22 = 5 . 4 9 ;  2)  o ~  = - - 8 . 0 6 ,  o22  = 8 . 0 6 ;  3) 
~z~ = 7 ,  ~22 = 14;  4)  ~ = - - 3 . 7 6 ,  z z 2  = 1 1 . 2 8 ;  5)  o l a  = 1 2 . 4  k g / m m  2,  z 2 2  = 1 2 . 4  k g / m m 2 .  " 

Figures I-5 show for each case respectively the variation of the absolute values of the 
axial sc I (solid curve) and tangential ec 2 (dashed curve) strains with the time t. The ex- 
perimental data are indicated by solid (axial strain) and open (tangentia I strain) circles. 
Thus, the agreement between the theoretical and the experimental results is entirely satis- 
factory. 

TABLE 

: No.  

t 
2 

4 
5 
6 

~,,,kgl 
mrn ~. , 

t2,23 
--t3,08 

' t5,24 
--t7,56 

6,62 
--6,87 

a,,, kg/mrn t .  , ~r ~., h - t  ] :~C.iOa,. h -t.: 

0,37 0,73 
--0,37 0,82 
" 0 , 4 6  0,53 
' =0,45 0;4o: 

0,24, 1,09 
�9 --0,21.~ I,,18 
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By using the equalities 

bl l  ~ b22 ~ b33, GIll1 ~ a2222 ~ ~3333, ~Z 121g ~ a1313 ~ G2323~ 

6~1122 ~ gi1-33 ~ G2233~ a l l l l  = 2a1212 -~- a1122~ 

in relationships (7), we arrive at the physical relationships of creep theory for isotropic 
media with unequal tensile, compressive, and shearing strain characteristics within the frame- 
work of the above approach. If a material has different resistance characteristics with re- 
spect to tensile and compressive strain only, one ordinarily uses the condition 4 a~212 = 
3 a~1~ as well�9 In this case, oo coincides with the stress intensity with an accuracy to a 
constant. 

It should be noted that the proposed physical equations describe a number of effects 
which are known to hold for isotropic media on the basis of experiments: dependence of the 
creep process on hydrostatic pressure [7, 8], departure from similarity of the creep rate and 
stress deviators [7-9], compressibility [7, 8], existence of axial creep under pure shearing 
conditions [2, 9], dilation [8], etc. 

We shall demonstrate the use of these physical relationships for describing creep in a 
complex stressed state in isotropic materials with mutually independent tensile, compressive, 
and torsional characteristics�9 We shall consider the experimental data obtained for tubular 
specimens under the simultaneous action of a tensile or compressive force and a torque [2, 
3]. The material is AK4-1T alloy, tested at 200~ In this case, the assumption concerning 
the interdependence of the material's modes of behavior under tensile, compressive, and tor- 
sional loads and the use of the equations of classic creep theory produce results which 
differ from experimental data by as much as 150% [3]. 

The proposed physical relationships are written in the following form: 
"C 

s 11 = N (~e)  ( a l l 11Gl l /UO @ b l l ) '  

�9 ~ = 2~ ( ~ )  ~ 1 2 , 2 ~ i ~ / ~  o,  812 

In processing the creep curves given in [2], it was assumed that V(Oe) = (o + Oo) n, and it 
was found that n = 8, a1111 = 6.15"I0 -4, a1212 = 5.57"]0 -4 (kg/mm2)-2n/(n+1)h-2/(n+1), and 
b11 = 9.54"10 -4 (kg/mm2)-~/(n+1)h-1(n+1). Table I provides the experimental ~c and ~c and 
the theoretical g~ and 2~2 values of the strain rates for different combinations of tensile 
(compressive) and torsional loads. The experimental data were borrowed from [3]. We note 
the satisfactory agreement between the theoretical and experimental values of the strain 
rate. Similar results can also be obtained by using the more complex relationships involving 
the third invariant of the stress deviator [2, 3]. 

Thus, the proposed physical relationships, presented in the fairly simple and convenient 
tensor invariant form, can be used for analyzing the creep of various structural elements 
made of anisotropic materials characterized by differences in strain resistance. 
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